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Abstract

We propose a coherent methodology for integrating various sources of variability on properties
of materials, in order to accurately predict percentiles of their failure load distribution. The
approach involves the linear combination of appropriate factors into a regression model. “CVaR
Deviation”, a concept borrowed from financial risk management, is used as the optimality crite-
rion in model-fitting. The approach yields identical results to Quantile Regression, but is more
general in scope. We consider confidence interval construction methods for the percentiles, and
adopt the most promising of these to compute statistical tolerance limits for the failure load.
The approach pools together information from physical tests and analytical model runs, result-
ing in accurate inferences even in the presence of relatively small datasets. Simulations suggest
the approach is quite robust, and allows for a substantial reduction in the number costly physical
tests that have to be performed, with little sacrifice in precision.

1 The Problem

A basic problem in engineering design is how to manage uncertainty and risk in the properties
of materials. Albeit costly, physical testing of the materials has traditionally been the primary
method of quantifying the uncertainty. Recent advances in analytical physics-based engineering
models and associated hardware/software technology, have made this an increasingly important
contributor. Although potentially less precise, the lower cost of the analytical method makes it
an attractive contender to the testing method. A sound risk management strategy in this context
might argueably be the effective integration of the information obtained from each method.

The purpose of this paper is to propose a coherent methodology for the integration of heteroge-
nous sources of information, by combining data into a regression factor model. Such an approach
will necessarily have to allow for treating of the test data as both covariate and response. Desirable
inferences from the resulting procedure will take the form of point and interval estimates of per-
centiles of material properties. Special cases include failure load tolerance limits such as A-Basis
and B-Basis values1.

2 The Method

2.1 Model Setup

The basic idea is to use each of the test data values as the response in turn; the remaining test
data and all the analytical model data serving as explanatory variables. Let Yij denote the jth

1An A-Basis value for the random variable X is a 95% lower confidence bound for the 1st percentile of X (in
repeated sampling the calculated A-Basis value would fall below the true 1st percentile 95% of the time). A B-Basis
value is defined similarly for the 10th percentile of X.



test data point corresponding to the ith batch2, i = 1, . . . , I, and j = 1, . . . , ni. We condense
the data from each source, test and model, into a pair of summary statistics such as the mean
and standard deviation. Other data reduction measures of location (e.g. median) and dispersion
(e.g. lower semi-deviation) could also be used for datasets with asymmetrical distributions. Letting
(mi, si) and (µi, σi) denote the sample mean and standard deviation for the test and model data
respectively in batch i, we fit the regression model:

Yij = c0 + c1µi + c2σi + c3mi + c4si + εij , (1)

where c0, . . . , c4 are unknown regression coefficients to be estimated from the data, and εij is the
residual error corresponding to the jth test data point in the ith batch.

2.2 Model Fitting
Let ε denote the residual error distribution, with cdf F−1, in the above regression model. The
deviation CVaR (Rockafellar, Uryasev, and Zabarankin, 2002) at probability level τ , is defined as

CVaR∆
τ (ε) ≡ IE

[
ε− IEε | ε ≥ F−1(τ)

]
, τ > 0.5 .

This is simply the average distance between the mean value and the values in the τ tail of the
distribution, and as such, is a one-sided measure of the width of such distribution. For the lower
tail, deviation CVaR is defined analogously as

CVaR∆
1−τ (−ε) ≡ IE

[
IEε− ε | ε ≤ F−1(τ)

]
, τ ≤ 0.5 .

Deviation CVaR is now the average distance between the mean value and the values in the lower
τ tail of the distribution.

The fitting of the parameters in regression model (1) then entails minimizing the following
optimality criterion over all (c1, . . . , c4) ∈ IR4:

Pτ (c) =

{
CVaR∆

τ (ε) , if τ ≥ 0.5 ,

CVaR∆
1−τ (−ε) , if τ < 0.5 .

(2)

This leads to the following estimated equation for the τth quantile of the failure load, as a function
of the generic factors {µ, σ,m, s}:

Q̂Y (τ) = ĉ0(τ) + ĉ1(τ)µ + ĉ2(τ)σ + ĉ3(τ)m + ĉ4(τ)s. (3)

Actually, the coefficient ĉ0(τ) = VaRτ (ε̂(τ)) is not determined by the minimization of Pτ (c), but
can for example be chosen so that Q̂Y (τ) is an unbiased quantile estimate, where ε̂(τ) is the
residual in an optimal point. This leads to the same estimates as in quantile regression, introduced
by Koenker and Bassett (1982). The optimization of Pτ (c) can be efficiently performed via linear
programming (Uryasev and Rockafellar 2000, 2002). The attained minimum value of Pτ (c) is a
natural candidate for a measure of goodness-of-fit.

An important advantage of this CVaR regression method, is that only mild distributional
assumptions are made, making the approach essentially nonparametric. A-basis and B-basis values
for a generic covariate vector [1, µi, σi,mi, si], are obtained as a 95% lower confidence bound for
the respective quantile, τ = 0.01 or τ = 0.10. These confidence bounds can be obtained via the
method outlined in Koenker (1994), using for example the Hall and Sheather bandwidth.

2The term “batch” will denote any extraneous source of variability affecting the material; materials from different
batches assumed a priori to have different properties.



3 Simulation Results

The performance of the CVaR regression method was assessed in a controlled environment consisting
of failure data simulated from Weibull distributions, with various choices for the shape and scale
parameters. We assess goodness-of-fit by measuring Mean Absolute Deviation (MAD) between
true and estimated 10th quantiles across batches, and Mean CVaR Deviation (MCD) for CVaR
regression fits. The CVaR deviation is that given by equation (2). A particular value of MAD
or MCD is based on 100 draws from the same Weibull distribution. The choice of shape (α) and
scale (β) parameters, constituting a batch, is made randomly and uniformly over the rectangle,
10 < α < 80 and 40 < β < 120. Each draw is of sample size n + 100. The first n points are then
used as test data, and the remaining 100 as model data. A new set of shape and scale parameters
is then randomly selected to produce data on the next batch, etc. Robustness of the methodology
was also assessed by perturbing the scale and shape parameters of the model data with respect to
the test data parameters (the true distribution).

Figure 1 shows the resulting deviations plotted as functions of number of batches (m) used
in the CVaR regression fit, as well as number of test points (n) within in each batch. The main
findings can be summarized as follows:

(i) MAD decreases as the number of batches and/or test points per batch increases.

(ii) MCD increases as the number of batches and/or test points per batch increases.

(iii) The accuracy of CVaR regression is relatively insensitive to the number of batches present;
but fairly sensitive to the number of test points per batch.

(iv) There are diminishing benefits in using more than 10 batches, or more than 10 test points
per batch, in any one experiment.

(vi) MAD and MCD are virtually unaffected by shape biases; the methodology therefore exhibits
a certain degree of robustness.
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Figure 1: Simulation results of the CVaR regression method applied to failure loads drawn from
Weibull distributions. The plot shows Mean Absolute Deviation (MAD) between true and estimated
10th quantiles across batches (m), and Mean CVaR Deviation (MCD) for CVaR regression fits. The
number of test points per batch (n) was also varied.
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